Increased chromosome instability dramatically disrupts neural genome integrity and mediates cerebellar degeneration in the ataxia-telangiectasia brain.
نویسندگان
چکیده
Ataxia telangiectasia (AT) is a chromosome instability (CIN) neurological syndrome arising from DNA damage response defects due to ATM gene mutations. The hallmark of AT is progressive cerebellar degeneration. However, the intrinsic cause of the neurodegeneration remains poorly understood. To highlight the relationship between CIN and neurodegeneration in AT, we monitored aneuploidy and interphase chromosome breaks (chromosomal biomarkers of genomic instability) in the normal and diseased brain. We observed a 2-3-fold increase of stochastic aneuploidy affecting different chromosomes in the cerebellum and the cerebrum of the AT brain. The global aneuploidization of the brain is, therefore, a new genetic phenomenon featuring AT. Degenerating cerebellum in AT was remarkably featured by a dramatic 5-20-fold increase of non-random DNA double-strand breaks and aneuploidy affecting chromosomes 14 and, to a lesser extend, chromosomes 7 and X. Novel recurrent chromosome hot spots associated with cerebellar degeneration were mapped within 14q12. In silico analysis has revealed that this genomic region contains two candidate genes (FOXG1B and NOVA1). The existence of non-random breaks disrupting specific chromosomal loci in neural cells with DNA repair deficiency supports the hypothesis that neuronal genome may undergo programmed somatic rearrangements. Investigating chromosome integrity in neural cells, we provide the first evidence that increased CIN can result into neurodegeneration, whereas it is generally assumed to be associated with cancer. Our data suggest that mosaic instability of somatic genome in cells of the central nervous system is more significant genetic factor predisposing to the brain pathology than previously recognized.
منابع مشابه
The Role of Malfunctioning DNA Damage Response (DDR) in Brain Degeneration
Maintenance of genome stability in the face of DNA damage is essential for cellular homeostasis and prevention of cancer and brain degeneration. The DNA damage response (DDR) is a complex response that is rapidly activated when a DNA lesion occurs in chromosomal DNA. Mutations affecting the proteins involved in the DDR can lead to genomic instability syndromes that involve tissue degeneration, ...
متن کاملRole of Mitochondria in Ataxia-Telangiectasia: Investigation of Mitochondrial Deletions and Haplogroups
Ataxia-Telangiectasia (AT) is a rare human neurodegenerative autosomal recessive multisystem disease that is characterized by a wide range of features including, progressive cerebellar ataxia with onset during infancy, occulocutaneous telangiectasia, susceptibility to neoplasia, occulomotor disturbances, chromosomal instability and growth and developmental abnormalities. Mitochondrial DNA (mtDN...
متن کاملAn object from beyond the solar system
Mitosis-specific role of ATR The ATR (ataxia telangiectasia mutated and Rad3-related) kinase plays important roles in the S phase and during the DNA damage response to safeguard genome integrity. Kabeche et al. identified a distinct ATR activation pathway in mitosis that is also critical for suppressing genome instability (see the Perspective by Saldivar and Cimprich). ATR is recruited by Auror...
متن کاملAn object from beyond the solar system
Mitosis-specific role of ATR The ATR (ataxia telangiectasia mutated and Rad3-related) kinase plays important roles in the S phase and during the DNA damage response to safeguard genome integrity. Kabeche et al. identified a distinct ATR activation pathway in mitosis that is also critical for suppressing genome instability (see the Perspective by Saldivar and Cimprich). ATR is recruited by Auror...
متن کاملWWOX guards genome stability by activating ATM
Common fragile sites (CFSs) tend to break upon replication stress and have been suggested to be "hot spots" for genomic instability. Recent evidence, however, implies that in the wake of DNA damage, WW domain-containing oxidoreductase (WWOX, the gene product of the FRA16D fragile site), associates with ataxia telangiectasia-mutated (ATM) and regulates its activation to maintain genomic integrity.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 18 14 شماره
صفحات -
تاریخ انتشار 2009